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The ionization cross section per uni t  range of the 

energy E of the ejected electrons f o r  coll ision of an 

incident charged par t ic le  of high energy E with an 

atomic system is given by dQ/de = E”[A(e)RnF + B(E)], 

where A and 3 are functions of e ,  and the t o t a l  cross 

section is  given by Q = E-’[A ,&nE +. B 1. 

A ( € )  and B(e )  for  the particular case of the atomic 

hydrogen are derived analytically as an expansion with 

respect t o  k = / e .  

values of k. 

8 ,  A and B are obtained and cmpared with the values 

given by Bethe using a different method. The coefficients 

of  the first two leading terms of the expansion of dQ/d€ 

withrespect t o  e or l/E when e is smll or large is found. 

lationship for  the average energy of the ejected e. ctrons 

is given. Different features of the high energy img. ?t 

ionization and certain connection between the ionizatioL 

and the discrete leve l  excitation is discussed. 

The coefficients 
I- I- 

The expansion converges f o r  a l l  

By integrating A(€) and B ( E )  with respect t o  

I- I- 

A re- 
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I. FORMULATION 

Bethe in  a memorable a r t ic le1  has s h m  that f o r  inelast ic  coll ision of 

a charged par t ic le  of high energy E with an atom the cross section dependes on E, 

and l inear ly  on two parameters which are functions of the atomic structure axd 

the energy transferred t o  the atom. 

charge Z by an eiectron w i t n  non-relativist ic high energy E, the cross section 

per u n i t  range of the energy 8 of the  ejected electron and the t o t a l  cross section 

are given respectively by 

For ionization of an hydrogenic atom of nuclear 

k, 3 a2 0 E/Z2 , 

with a. the Bohr radius and E and E i n  rydbergs. A(€) and B ( E )  are functions of 

E .  A and B are dimensionless constants and independent of the nuclear charge, 

and are integrals of A(€) and B ( c )  with respect t o  E .  emax is the maximum value 

of E .  Eqs. (1) and (2)  w i l l  be derived here. 

and using SM rules f o r  the generalized osci l la tor  strength he has evaluated A 

and B Here A ( € )  and B(c) are derived analytically, 

and by integrating them Over 6, values of A and B are rederived. 

I- I- 

Bethe has derived (1) and ( 2 ) ,  

I- 

f o r  the hydrogenic atoms. 
I- 

I- I- 

With the system of an incident electron and an hydrogenic a tm of nuclear 

charge Z l e t  k' -1' N N 

and ejected electrons, and K' =:: - k:. 
the electron, and throughout we express energy i n  rydbergs. 

k:, and k' represent the momenta of the incident, scattered, 

We take h = m = 1 with m the mass of 
N N 

Then E = ki2 and 

4 
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. 

e = k". In  this  way E and e take the dimension of the inverse of the length 

squared, but numerically their values are given by rydbergs. 

approximation 

In the Born 

where df/de i s  the generalized osci l la tor  strength per u n i t  range of e defined by 

with I ls> and I k '>  the ground and the continuum wave functions of the atorflic electron 

1 k'> is  normalized such tha t  asyaptotically I&'>- ( 2 ~ )  
i&roduce -the d-imensionless vectors 

. We -3/2 ill' * 2 N 

e 

K 
-1 - -1 

3?J & and K by k' = Pl&., $ .= i&a - k i  = p~, and&' = pK, where p = "ao. 

Evaluation of  df/de 

- dQ 
de 

then leads t& 
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We seek an expansion of F(K) which would converge for all values of the 

momentum transfer K. 

introduced by Lassettre3 for excitation of the non-hydrogenic atoms and 

deduction of the form of the differential cross section from experimental data. 

It is feasible that the present expansion will also find usefulness for 

ionization of the non-hydrogenic atoms. 

K for small and large values of K, corresponding to the limits of the integral 

in (6) at high energy, but the integrals of the two expansions may and, in fact, 

do differ by a constant. T o  overcome this difficulty we change the variable of 

integration from K to v. 

Similar expansion with useful application has been 

F ( K )  in (7 ) can be expanded in terms of 

This results in 

] d'P. e - q / k s  in49 

2(2k)5 - 
4 (1 + k2) sin 'P 

F ( X ) ~ K  - * 2k cos '9 - (1 - k2) sin 'P 

To separate out the logarithmic term in the integral in ( 6 )  we introduce 'pl as 

Then the zeroth order term of the Taylor' s expansion of 'p with respect to K2. 
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2k 

1 - k2 cp, = cp - 'PO, 'PO = tan " - 

and by direct substitution 

From (7) and (9) it is seen that fo r  all values of K and k, 'p, lies between 0 and 

-n. The transcendental functions in the integrand in (10) can then be expanded in 

powers of and the integration can be carried out term by term. With this procedure 

we ob5ain 

al 

(-2 cp, Irn 
f C A m ( % )  X - m. ] 

m = l  (1 f k2)" 
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m 

u 

where $ = l/k, a = $, b = 

6% stands for  the r ea l  part  of a complex quantity. 

- i, c = p-2iY and B is Bernoulli' s number. n 

In t h i s  way, through ( 6 ) ,  dQ/dc i s  expressed as a converging sum over 
1 

for any value of the momentum transfer, and the problem of integration is 

reduced t o  a summation. For high energy incident electrons t o  f i r s t  order, 

- k2 = (1 + k?/2kl, and kl + k2 = 2k - Therefore the lower and the upper kl 1 

limits of the integral  i n  (11) are given a t  high energy by 'p, = k/2kI2 

and = respectively. Evaluating (11) at  the limits, combining it with 

( 6 ) ,  and comparing the resul t  with (1) gives 

m 

m = l  
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Substitution of (I) into (3) and comparison with ( 2 )  shows that  

where, because of the form of A ( € )  and B(e ) ,  the upper l i m i t s  of the integrals 

have been extended t o  inf ini ty  without loss of accuracy4. 

A(k2) = A(c)dG/dk2 = p2A(e) .  

Here, by definition, 

Similarly B(k2) = p2B(e), and by (13) and (14) 

)I A and B become independent of the nuclear charge. Numerical evaluation of 
7 7 

the integrals i n  (15) yields 

A yz l.lj365 B -- 5.02625 
T 7 -  

This completes the derivation of Eqs.  (1) and (2) .  

and B 

Using these values of A 
7 

i n  Eq. (2) we can write t h i s  equation alternatively as 
7 

4nazM2 

Z4k, 
& - -  Qn4Ckf , M2 = 0.28341 , C = '/0.047483 

Eq. (2a) i s  the form originally given by Bethe with M2 = 0.285 and 

A more accurate evaluation of M2 and C using Bethe's method has been done by 

Inokuti5, and values given by (2a) are  in  agreement with these values to a l l  

places. 

s l ight ly  different form, and (12;) and (14) agree with these results. 

C = '/0.048. 

Similarly Inokuti' has given the numerical values of A ( € )  and B ( E )  i n  



- 8 -  

11. RlESULTS AND DISCUSSION 

It is convenient to define by dQo/dc the cross section which is obtained 

by (4) by replacing the generalized oscillator strength by the optical 

oscillator strength,dfo/da, given by the first non vanishing term of the 

Taylor's expansion of e - i ~ "  r - in (5). Then by straightforward integration, 

Comparison of (16) with 

Y 

shows that 

relating A(€) t o  the squared modulus of the dipole moment, integrated over 

directions of the ejected electron. 

limits in the integral in (4) by their first order term, and an intergration 

leads with the use of (13) to 

Substitution of (16) Ln (4), replacement Of the 

Comparison of this with (13) and (14) shows that (1) can be written 
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Then, contribution of the small scat ter ing angle, or equivalently small 

momentum transfer  by the incident electron, t o  the cross section represented 

by the logarithmic term i n  (1) is half  the contribution of the dipole 

integrated over a l l  range of the momentum transfer.  

way t o  avoid the introduction of a cut off i n  the integral  i n  (4) for  the 

term 

This provides a convenient 

dis tant  coll isions.  

The two terms i n  (19) correspond to the  dipole and the non-dipole parts 

of the cross section, and they are  comparable i n  magnitude throughout the 

non-relativist ic region of the incident energy 

contrast t o  the excitation of the low lying levels  of the atoms where a t  

energies several times the threshold energy the dipole par t  dominates the 

t o t a l  cross section. 

re la ted t o  the high energy electron impact excitation, such relationship does 

not ex i s t  between photo-ionization and the electron impact ionization. 

( C f .  Fig. 3). This is i n  

This also indicates tha t  while photo-excitation is  closely 

An interesting par t  o f  the present paper is t o  find the leading terms of 

the expansion of dQ/dg i n  terms of 6 o r  l / c  where g is s m a l l  or large, respec- 

t ively.  Using the exp l i c i t  form of Am(v) given by (12) we find a f t e r  some 

algebraic manipulation t h a t  we have the following l imiting cases when k is  

s m a l l  or large 
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It a lso  is necessary t o  expand A(€) for small and la rge  e. 

establ ish tha t  for  0 6 k < 1 the factor  (1 - e -m’k) which appears i n  (13) 

i s  equal t o  uni ty  plus %ems of -the order less than k17. 

expansion considered here t h i s  fac tor  can be put equal to unity and w e  obtain 

In  doing s o  we can 
-1 

Then for the  

28 2 
N 

k-co 3k2 

Substi tution of (20) through (23) i n to  (14) leads t o  
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With these values of A(€) and B ( G )  Eq. (1) can be writ ten 

“1 
dQ/do N (Z?k12) [(Ao - Allr2) kI2’ +.Bo - Blk2] na;, k2 = - 9 z2 

E: >> 1, E: << 1 

Eq. (26) is a val id  expression when the incident and the scattered 

electrons have high, and the secondary electron has low, energies. Most 

contribution t o  the t o t a l  cross section is due t o  t h i s  energy region of the 

secondary electron. 

quantum number n of the normal s t a t e  of the hydrogen atom i n  the following 

way7. 

where E is  the energy of the s ta tes  with the principal quantum number n, 

and noticing that dQ/dG is  a continuous function of E: when e becomes negative, 

through the relationship Q(n)dn = (dQ/dc)d€ we obtain up t o  n-* terms: 

Eq. (26) is related t o  the excitation t o  a high principal 

-2 -2 Let Q(n) be the excitation cross section. By writing E = - Z2n a. , 

Brown8 

agrees with h i s  resu l t s .  

has evaluated Q(n) for  n >> 1 by an independent method, and (28) 

Similarly f o r  high n and high incident energies 
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(28) is i n  agreement with the results of ‘rhe numerical integration of Q(n) by 

the author’. 

Concerning Eq. (27) the leading term i n  t h i s  equation i s  the same as t h e  

e l a s t i c  cross section between two electrons in  a frame of reference where 

one of the electrons i s  i n i t i a l l y  a t  rest and i ts  energy becomes E after the 

coll ision. The cross section i n  t h i s  case is the same c lass ica l ly  and quantum 

mechanically, the classical  cross section being given by the Rutherford formulalo 

and the quantum mechanical by the Moeller’s formula”. The reason for  the agree- 

ment of the leading term with the e l a s t i c  cross section i s  given i n  reference 10. 

Eq. (27)  i n  addition gives a second order term which is due t o  the binding of 

the atomic electron t o  the nucleus. This term agrees with the classical  cal- 

culation of Vriens and Inokuti, where quantum mechanical momentum dis t r ibut ion 

is  assumed for  the bound electron (pr ivate  communication). 

When 8 becomes comparable t o  E, the next higher t e r m  i n  E and a l s o  the 

contribution from the second Born approximation should be included i n  (27).  

I n  addition, the exchange ef fec t  for  the ident i ty  of the  t w o  electrons should 

be taken into account. Because of the d i f f i c u l t y  i n  calculating the  second 

Born approximation t h i s  w i l l  not be done here. 

(27), t h e  inclusion of the exchange ef fec t  i n  the leading t e r m  of (27) leads 

t o  the Mott’ s formula’’ 

Neglecting t h e  second t e r m  i n  
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Concerning the contribution of the exchange e f f ec t  t o  the t o t a l  cross 

section it should be pointed out that t h i s  is of the order of 1/E, and 

therefore it becomes negligibly sma l l  a t  high enough incident energies. 

can be seen by integrating (27) over the energy region where e is  comparable 

t o  E.  

This 

A quantity of i n t e re s t  is the  average energy of the ejected electrons i n  

an ionization process. This quantity w i l l  be calculated below. By definit ion 

dQ d$, de / 1 - de de 
0 

de 0 

By writing E = p2k2 and by making use of (1) we find tha t  

The integrals occuring i n  the denominator of (31 ) are  given by ( 2 ) .  

large A(k2) and B(k2) a r e  proportional t o  k-' and k-4 respectively [Cf. Eqs. ( 2 3 )  

and ( 2 5 ) ] .  'The upper l i m i t  of the integral  with respect t o  A(k2) i n  the numerator 

of (31) can then be put equal t o  inf ini ty .  

B(k2) we haveup t o  the f i r s t  order terms 

When k i s  

For the integral  with respect t o  
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k12 - 1 a k12 - 1 
4 k2B(k2)dk2 = f k2B(k2)dk2 + f - k2dk2 

0 0 "a k4 s 

where a is a value of k2 at which B(k2) reaches its asymptotic form. 

way we find that 

In this 

with C and D dimensionless constants given by 

m 

C : 4 + k2A(k2)dk2 = 4.606 9 

0 

D = [ k2B(k2)dk2 - 4 m a  = - 2.123 

and A and B given by (l5a). 
7 7 
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It is more appropriate t o  use an asymptotic form f o r  B(k2) i n  which 

the exchange effect  i s  taken in to  account. Comparison of the leading term 

of (25)  with (29)  shows that when exchange is included the asymptotic form 

of B(k2) i s  given by 

1 1 

4r;+- - k2(kI2 - k") 

By making use of t h i s  form i n  (3l) ,  and noticing tha t  when exchange is included 

'max 2 

i n  t h i s  equation by 

1 = - p2(k12 - l), we f ind that (33) is s t i l l  val id  provided we replace D 

(35)  Dex = D + 4 ( 1  - ~ 8 )  = - 6.441 

It should be realized tha t  although both the numerator and the denominator 

of (33) a re  of the form Wl2 + constant, the or igin of the logarithmic terms 

i s  quite different.  The term i n  the denominator comes en t i r e ly  from small 

momentum transfer,  that i n  the numerator par t ly  from these and par t ly  from 

large momentum transfer.  

ejected electrons. 

This indicates a large spread i n  the energy of the 

With or without exchange,; as the incident energy increases reaches a 

l i m i t  given by (CIA ) (Z/ao)" = 4.063 2" ryd. 

for  an electron bounded t o  a central  charge Z is  proportional t o  i t s  binding 

energy, although from (33) it i s  seen t h a t  the higher Z the higher the incident 

energy a t  which t h i s  maximum is reached. 

Then the maximum value of 
r 

For many electron atoms it can be 
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said tha t  the maximum value of the average energy of an ejecked electron is 

roughly proportional t o  the square of the effect ive charge seen by t 

before i t s  ejection. 

We a l s o  notice that f o r  atomic hydrogen the maximum energy 10s 

incident electron cannot exceed 5.063 ryd. Bethel' lo has shown t h a t  the 

energy loss by an electron is  an ine l a s t i c  col l is ion with the-hydrogen atom 

reaches the value of 2 ryd a t  high energy, and that  28.34% of the coll isions 

lead t o  ionization. U s i n g  these informations we f ind  that a t  high incident 

energies the average energy loss  of an incident electron i n  excitation of a l l  

the discrete s ta tes  of t he  atomic hydrogen reaches the value of 0.7887 ryd. 

Figures 1 through 4 i l l u s t r a t e  some of the r e su l t s  obtained. Fig. 1 is 

the well k n m  graphical comparison of the Bethe approximation with the Born 

approximation, given here for  the specific case of ionization. 

versus m(E/Z2),  where by Eq. ( 2 )  a s t r a igh t  l i n e  is obtained for  the Bethe 

approximation. I n  the case of the atomic hydrogen the two approximations agree 

with each other I for energies larger than about 20 threshold units. 

with larger  central  charge the agreement i s  reached a t  s t i l l  higher energies. 

Z2EQ is plotted 

For atoms 

Fig. 2 is a plot of the dimensionless coefficients A(k2) and B(k2) versus 

the dimensionless parameter k2 = agc/Z2. The coefficient A(k2) which i s  pro- 

portional t o  the dipole moment, Eq. (17), is appreciable only for s m a l l  values 

of k2, corresponding t o  the small momentum transfer  by the incident electron 

a r i s ing  from the d i s t an t  coll isions.  The For large k2 it f a l l s  off as k-9. 

coefficient B(k2) approaches i t s  c lassical  l i m i t  of 4/k4 given by the Rutherford 

formula. The figure shows clearly the t ransi t ion be'hween the  q m t a l  region, 

small E, and the classical  region, large e .  In  the classical  impulse approxi- 
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mation12 - le the t o t a l  ionization cross section a t  high incident energy is 

specified by (2) where A = 0 and B = 2 / 3 .  
7 7 

In Fig. 3 the r a t i o  of the 1ogarithmLc part  of the cross section as  

given by (2)  t o  the t o t a l  cross section is  plotted. 

contribution of the dipole t e r m  given by the logarithmic term t o  the  t o t a l  

cross section remains a fract ion of the t o t a l  cross section for  the whole 

It is evident that 

non-relativist ic range of the incident energies. 

In  Pig. 4 a plot  of the average energy of the ejected electrons versus 

the incident energies is  given. The average energy reaches the l i m i t  of 

4.063 Z2 ryd 

of the impulse received by t b  atom. 

as  the incident energy tencis t o  inf ini ty ,  signifying the l i m i t  

Re la t iv i s t ic  corrections a re  neglected. 

To complete the discussion we l is t  the coefficients A(n) and B(n) originally 

given by Bethe for  the electron impact excitation. 

of Q(n) we can write i n  anology t o  (1) 

Recalling the def ini t ion 

The dimensionless constant and charge independent coefficients A(n) and B(n) 

are given for  n = 2 through n = 12 i n  Table I.17. 

can be used. 

For higher values of n Eq. (28) 
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Table I. Values of A ( n )  and B(n)  
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It is interest ing t o  notice t h a t  the rat ion A/B for excitation and 

ionization is a mm9tonically decreasing function of the energy transferred 

t o  the atom, and a t  high energytransfer  it approaches zero. 

the logarithmic term to the non-logarithmic term i n  the cross section is 

The rat io .  of 

(A/B) Ul2. 

10.022 for n = 2 excitation, and is 1.558 f o r  ionization. 

For an incident energy of 1000 ryd and Z = 1, t h i s  r a t i o  is 

The foregoing r e su l t s  f o r  electron impact ionization and excitation a r e  

a lso applicable to the  proton impact ionization and excitation. 

from the f a c t  t h a t  the cross section i s  proportional t o  the  square of the 

charge of the projecti le,  and i n  the approximation s ta ted following Eq. (12) it 

This r e su l t s  

depends on the i n i t i a l  r e l a t ive  velocity of the projecti le-target atom only, 

and is independent of the reduced mass of the system ( C f .  Ref. 2) .  Thus a l l  

equations derived so f a r  can be used for  proton impact provided E is replaced by 

(m/M)Ep, where M and Ep are  the mass and energy of the incident proton. In  t h i s  

way ( 3 6 )  agrees with the high energy analyt ical  expression of Bates and Griffing” 

up to, and excluding, the ki4 terms for n = 2 and n = 3 proton impact excitation; 

and (2) gives the same value a t  3.5 MeV incident protons as the graphical Born 

calculation of Bates e t  all’, and Peach1’, for proton impact ionization. 
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Figure Captions 

Figure 1. A comparison of the Bethe's approximation, Eq. ( 2 ) ,  with the 

Born approximation. Q is the ground state ioni 

hydrogenic atom. 

A plot of the coefficients A(k2), B(k2), and 4/k4. 

% is the logarithmic part of Eq. (2) and R is the ratio of this 

part t o  the total cross section. 

Figure 2. 

Figure 3. 

Figure 4. A plot of the average energy of the ejected electron versus the 

incident energy. Born approximation has been used for incident 

energies less than 25 ryd, and Eq. (33) for energies above this 

value. 
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